CO₂NCORD:The CO₂ National Capture Opportunities and Readiness Database

A Comprehensive Software Tool to Understand Facility-Level Source Potential and Underlying Techno-Economics for Carbon Capture and Storage (CCS) at Scale

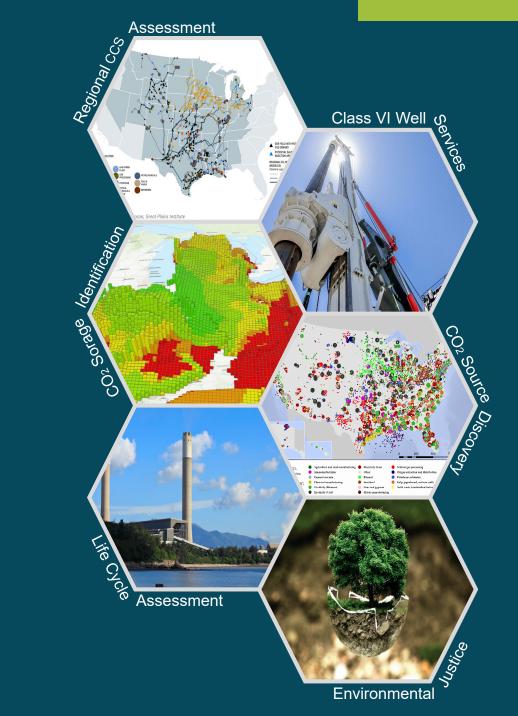
Presented by Jessi Eidbo, AICP | Carbon Solutions

CCUS 2023 | University of Houston | Houston, TX | 26 April 2023

ABOUT US.

Mission-driven business

CARBON SOLUTIONS works with industry, government, nonprofits, researchers, & other stakeholders to identify & implement real-world solutions for low-carbon energy challenges.


HISTORY: Launched in 2021 | 27 employees (12 PhD's) FUNDING: 60% Fed. | 25% NGOs | 15% Industry. FOUNDATION: Development of *SimCCS* and complementary software suite for system optimization.

Energy applications

CO₂ capture-transport-utilization-storage, hydrogen, direct air capture, geothermal, wind, energy storage, grid modeling, electric vehicles, energy equity, stakeholder facilitation, planning and siting.

Data analytics

Optimization, reservoir simulation, ML/AI, LCA, TEA, econometrics, GIScience, and more.

MEET THE STAFF

Leader

Energy

Marie Middleton Abernathey CEO. Science Design Marketing

Abramson

Visualization.

Communication

Business

Management

Finance &

Benjamin Adams Mechanical Engineering

Jeff Bennett Engineering, LCA, Software Development

Kyle Cox Geology. GIScience

Reservoir

Simulation

Marketing,

Communications

Juan C. Duque Research Policy, Planning, Scientist

Kevin Ellett Geoscience. Reservoir Simulation

Sarah Henao Data Science, Economics/ TEA Statistics. Optimization.

LCA, Energy Engineering

Amy Jordan **Peter Johnson** Hydrogeology, Geoscience, Software Development

Dane **McFarlane** Policy Analysis, Climate

Jessi Eidbo

Software

Development

Energy Equity &

Env. Justice

Marco Miranda

Infrastructure Optimization

Jonathan **Ogland-Hand** Energy Systems, TEA, Software

Kate Sale Chemical Engineering

Kelsey Seals Petroleum Engineering

Carl Talsma Software Engineering

Anna Turnini Hydrogeology, Geology, GIScience

Transportation

Planning,

Optimization

MEET THE CO₂NCORD TEAM

Jeff Bennett Engineering, LCA, Software Development

Jessi Eidbo Policy, Planning, Software Development

Michael Ford Energy Economics/ TEA

Daniel Rodriguez LCA, GIScience

Carl Talsma Software Engineering

Kate Sale Chemical Engineering

TODAY'S AGENDA.

I. Context
II. CO₂NCORD Overview
III. Data and Methodology
IV. Application
V. Next Steps and Beyond

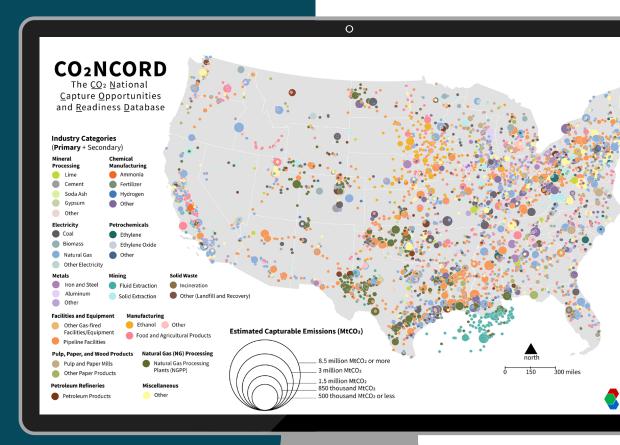
A *minimum* 0.9 GtCO2/yr of CO2 sequestration is required to transition the economy to net-zero by 2050.

-Princeton Net Zero America Study (Dr. Eric Larson, Andlinger

Center for Energy+Environment)

A *minimum* 0.9 GtCO2/yr of CO2 sequestration is required to transition the economy to net-zero by 2050.

-Princeton Net Zero America Study (Dr. Eric Larson, Andlinger Center for Energy + Environment)


There will be an \$330-500 billion invested in CCS projects in the US by midcentury, and a fair portion will be spent on profiling capturable CO₂ streams from emitters.

-The Rhodium Group, 2022 CCUS Analysis

CO₂NCORD

- Enables users to identify sub-facility sources of CO₂ for profitable CCS development.
- Provides critical, unique projectspecific insights, including:
 - Breakeven CO₂ capture cost,
 - technology readiness level (TRL), lifecycle CO₂ emissions
 ...for any prospective CCS project
 across the country.

USER CAPABILITIES.

Filter by Industry

Output any combination of 33 industry sub-categories for source opportunities unique to the user.

Filter by AOI or User-Defined Geography

Users can upload a shapefile to output capture opportunities in an AOI

Filter by Industry-Specific Parameters

Limit outputs by facility age, min. capturable emissions potential, cost parameters, and more.

Primary Industry	Secondary Industry Category		
Mineral Processing	Cement		
	Gypsum		
	Lime		
	Other		
	Soda Ash		
	Biomass		
Electricity	Coal		
	Natural Gas		
	Other electricity		
Petrochemicals	Ethylene		
	Ethylene Oxide		
	Other		
Facilities and Equipment	Other gas-fired facilities/equipment		
	Pipeline facilities		
Mining	Fluid Extraction		
	Solid Extraction		
	Ammonia		
Chemical Manufacturing	Fertilizer		
	Hydrogen		
	Other		
Petroleum Refineries	Petroleum Products		
Natural Gas (NG) Processing	Natural Gas Processing Plants (NGPP)		
	Iron and Steel		
Metals	Aluminum		
	Other		
Manufacturing	Other Manufacturing		
	Food and Agricultural Products		
	Ethanol		
Pulp, Paper, and Wood	Pulp and Paper Mills		
Processing	Other Pulp, Paper, and Wood Products		
Solid Waste	Incineration		
	Other		

INDUSTRY CLASSIFICATION.

Within an individual facility, CO₂NCORD can extract stream-level opportunity:

- characterizing capturable emissions for specific equipment,
- stream-specific cost estimates

EMISSIONS STREAM CLASSIFICATION.

Example iron/steel mill shows how multiple opportunities for capture exist for each unique facility stream.

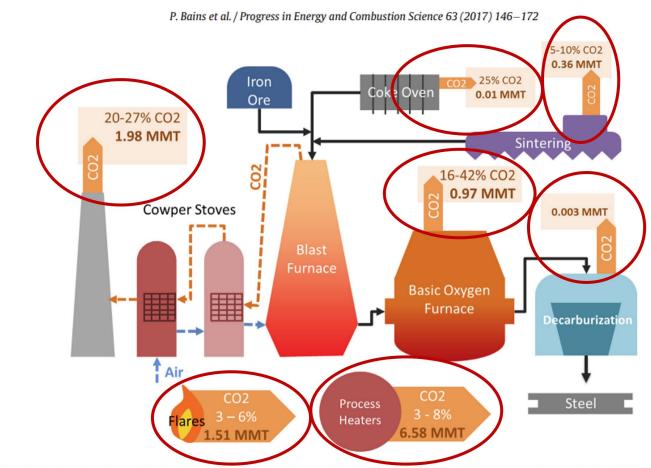


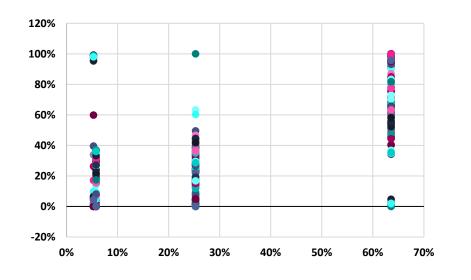
Fig. 10. Process diagram for blast furnace and basic oxygen furnace primary iron and steel production. 2014 emission numbers taken from U.S. GHGRP for U.S. Steel Corps plant in Gary, IN.

158

CAPTURE COST ESTIMATES.

Dual Estimation Methodology:

(1) Industry-specific (foundation in NETLmethodology) + (2) Itemized to account for


economies of scale, regional energy, & local labor.

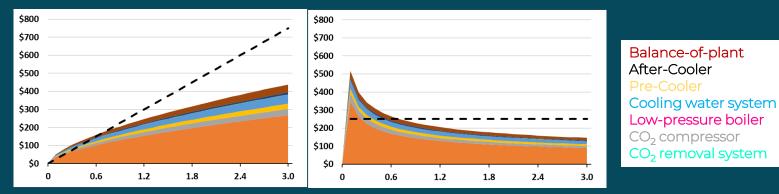
Highest-degree of cost specificity possible without conducting a full FEED study.

CHARACTERIZE INTRA-FACILITY EMISSIONS COMPOSITION PROFILES.

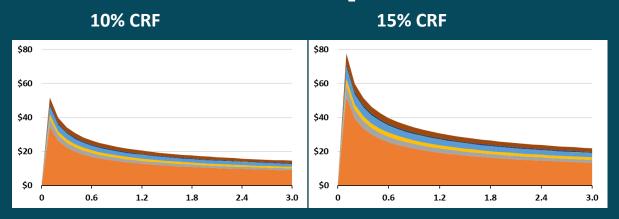
Sector	Top 3 Emitting Facilities for Each Industry (of Study Industries)	Total CO ₂ emissions	Stream 1 % of Total Emissions	Stream 2 % of Total Emissions	Stream 3 % of Total Emissions	Stream 4 % of Total Emissions
Petroleum Refineries	Chevron Pascagoula Refinery	4,298,251	8%	4%	6%	83%
	CHEVRON PRODS.CO. RICHMOND REFY	4,124,414	8%	4%	6%	83%
	Flint Hills Resources Pine Bend Refinery	3,963,509	8%	4%	6%	83%

Petroleum Refineries - Petroleum Products					
	FCC + SCU	process heaters PSA unit tail gas Balance			
	Petroleum refining	Stationary Combustion	Hydrogen Production		
	вх			C-BX- AZ-BJ	
Literature	25.3%	63.6%	5.8%	5.3%	

Actual				
25th Percentile	0.8%	55.8%	0.0%	0.0%
Mean	17.8%	71.8%	5.6%	4.2%
75th Percentile	29.9%	95.7%	4.6%	0.0%


CAPTURE COST ESTIMATES.

Dynamic functionality allows user to customize financial estimates.


Unit (\$/tCO₂ captured)

Overnight capital costs

Total (\$ millions)

MMtCO₂ captured

Amortized capital costs (\$/tCO₂ captured per annum)

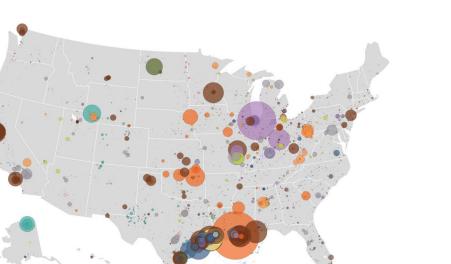
- Exponents unique to MDEA, compressor, and other capital equipment – leads to economies of scale (top graphs).
- **CRF matters**. 10% vs. 15% in bottom graphs.

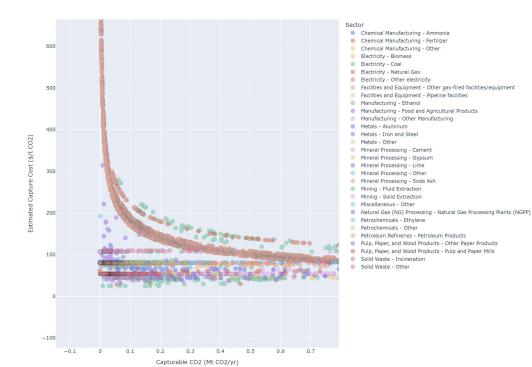
Financial assumptions

MMtCO, captured

Carbon Solutions

CAPTURE COST ESTIMATES.

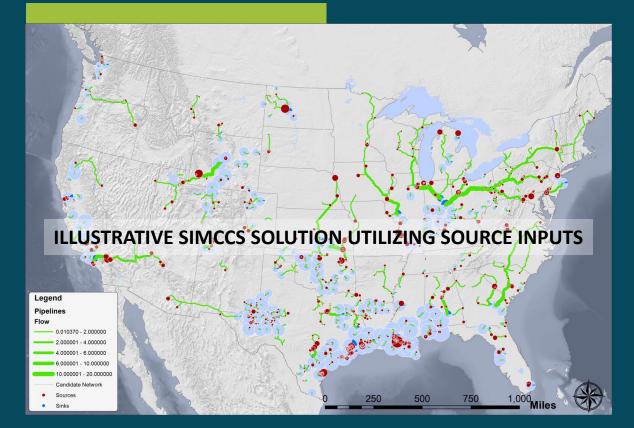

Dynamic functionality allows user to customize financial estimates.


USER CAN FURTHER CUSTOMIZE:

- Power source (i.e., external vs. parasitic)
- Minimum captured
- Max train capacity
- Project economic life
- Capital Recovery Factor

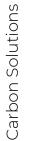
- Oldest allowable plant
- Cooling system
- Project type
- Retrofit factor
- Capture rate

trad


Multi-Scenario Functionality.

Flexible User Outputs

- Data outputs adaptive to user needs
- Range from simplified to unit-level, aggregated to include suite of information within CO₂NCORD
- Outputs both graphical and geospatial results summary


Carbon Solutions

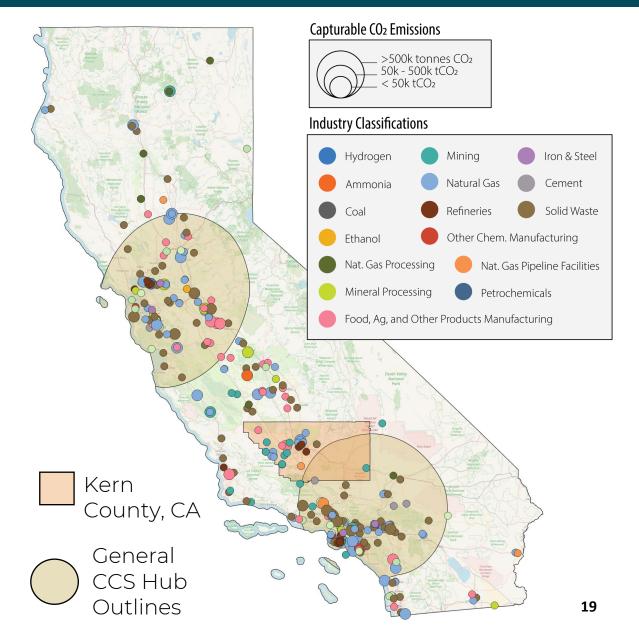
IMMEDIATE INTEGRATION WITH SIMCCSPRO **SOFTWARE + CARBON SOLUTIONS OPTIMIZATION SUITE**

CO₂NCORD is built for immediate compatibility with Carbon Solutions suite of optimization and energy research software tools, notably including SIMCCSPRO

COMPREHENSIVE, OPEN-SOURCE DATA INPUTS.

- EPA-FLIGHT locations, stream emissions
- EPA-EGRID locations, unit emissions (for power plants)
- Depoweble Fuele Acces
- Renewable Fuels Association
- International Energy Association (IEA) IRENA
- National Hydrogen Database
- Extensive review of published literature

Inflation from BEA – GNP-IPD. Independent stream characterization and evaluation. Cost formulae from DOE-NETL Inflation: BLS (PPI, CQEW) Co-pollutants: EIA-923 Heat/Power needs: GPI, 2020 Heat/Power prices/regions: EIA AEO2022 + EMM regions

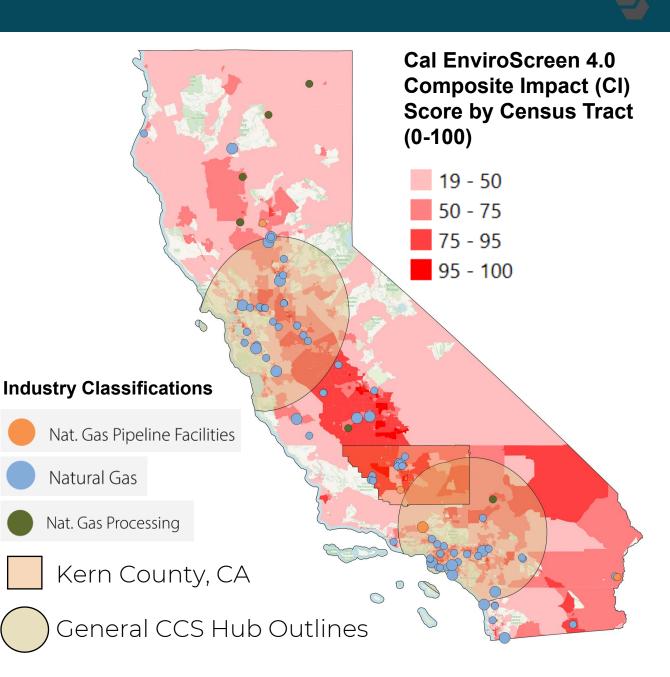

EXAMPLE APPLICATION:

CUSP Focused Project: Laying the Cornerstones of a Regional Storage Hub in California

Objectives:

- Investigate storage volumes and dynamic storage capacity in targeted saline formation
- Forge a pathway to deploy a regional storage hub in the Southern San Joaquin Basin

Project Lead: Stanford University **Partners:** Sentinel Peak Resources (SPR), Carbon Solutions, Montana State University



EXAMPLE APPLICATION:

CUSP Focused Project: Laying the Cornerstones of a Regional Storage Hub in California

Current Research Priorities

- Understand the extent of capturable potential across state industries, with focus on natural gas
- Contextualize potential for centralized storage hub, including the economics of a combined capture (CO2NCORD), transport (CostMAP^{PRO} + SimCCS^{PRO}), and storage (CUSP)
- Consider impact of environmental justice on siting infrastructure

FORTHCOMING

- **O1.** Additional functionality to address user customization needs
- 02. Advance techno-economics for facility-specific impacts to stream(s) & validate estimates
- **03.** Streamline GUI to run CO₂NCORD, as well as integrate with SimCCS^{PRO} + optimization software suite

QUESTIONS?

CONTACT.

Website

Carbonsolutionsllc.com

Email

Jessi.eidbo@carbonsolutionsllc.com

