CARBON SOLUTIONS

Advances in Nationwide Carbon Storage Estimates to Support a Net-Zero Economy

Richard Middleton, Ben Adams, Kyle Cox, Peter Johnson, Erin Middleton, Jonathan Ogland-Hand CARBON SOLUTIONS

richard.middleton@carbonsolutionsllc.com

AGU Fall Meeting | December 15th, 2023

Reaching net-zero requires a coordinated effort

Ogland-Hand et al. (2023), How to Net-Zero America: Nationwide Cost and Capacity Estimates for Geologic CO₂ Storage, *https://doi.org/10.31224/3293*.

- Princeton Net-Zero America Report (PNZA): https://netzeroamerica.princeton.edu
- Low-Carbon Resources Initiative (LCRI): https://lcri-netzero.epri.com/
- 2022 Operating Capacity: https://www.globalccsinstitute.com/resources/global-status-of-ccs-2022/

How To Net-Zero America: Nationwide Cost and Capacity Estimates for Geologic CO₂ Storage

Authors: Jonathan D. Ogland-Hand, Kyle J. Cox, Benjamin M. Adams, Jeffrey A. Bennett, Peter J. Johnson, Erin J. Middleton, Carl J. Talsma, Richard S. Middleton

Contributors: Tara Gross and Jacqueline Taylor

Date: October 18, 2023

HISTORY SCO₂TPRO

Timeline

- **2012** | Pre-SCO₂T for SimCCS.
- 2014 | Version 1.00 released (*link*)
- **2018** | SCO_2T public domain release with *SimCCS*.
- **2019** | Open-source SCO_2T as part of R&D 100 Award.

2020 | Publication-release of ROMs with publication.

2021 | CARBON SOLUTIONS LLC formed.

2021–2024 | SCO_2T^{PRO} , DOE Office of Science.

Publications

- SCO₂T Part I (2020): <u>link</u>.
- SCO₂T Part II (2021): <u>link</u>.
- SCO₂T Part III (2021): <u>link</u>.
- SCO₂T Part IV (2022): <u>link</u>.
- Application: Plume Geothermal (2022): <u>link</u>.
- Application: Electricity Planning (2022): <u>link</u>.
- Application: Nationwide Potential (2023): <u>link</u>.
- White paper: How to net Zero (2023): <u>link</u>.

sco₂*T*^{PRO} High-level Overview

Coupled Software and Database

- Software uses reduced order models (ROMs) to estimate CO₂ injection rates, storage capacities, & per tonne costs
- ROMs trained with machine learning on reservoir simulation data
- Geology database currently covers over 119 reservoirs across 2.1 million km^{2.}

DATABASE Nationwide Cost & Capacity of Geologic CO₂ Storage

Capacity

Cost

Available storage

- Orders of magnitude more "low-cost" CO₂ storage than is needed to reach net-zero.
- 100s of years of stationary emissions.
- Spatial distribution.
- Coordination.

Offshore

- Approximately four times the cost of onshore injection & storage.
- Other advantages.

Financing

 Assumptions can impact costs by several dollars per tonne.

RESULTS Onshore Deep Dive

14%

9%

8%

8%

17%

Costs

- Post-injection site care (PISC) is low because it's so far into the future.
- Cost breakdown doesn't • change much with geology.
- OPEX is 36–41% of total • costs.
- Costs drop significantly • once CAPEX is cleared.

Comparing Onshore vs Offshore Cost

Comparison

- Lowest-cost 2 GtCO₂.
- Offshore requires fewer monitoring wells based on UK study (1 per 5–10 injection wells).
- Offshore platform can host up to 9 injection wells.
- Offshore wells are longer, more complex, often horizontal.

Region	<i>SCO₂T^{PRO}</i> (GtCO ₂)	NATCARB (GtcO ₂)	Difference
1. Middle Atlantic	25	11	56%
2. South Atlantic	374	367	2%
3. East North Central	322	170	47%
4. East South Central	441	440	0%
5. West North Central	140	164	-17%
6. West North Central	936	1239	-32%
7. Mountain	509	452	11%
8. Pacific	153	351	-129%
9. Offshore Mid- Atlantic	502	0	100%
10. Offshore South Atlantic	468	191	59%
11. Offshore EGOM	142	47	67%
12. Offshore WGOM	397	1601	-303%
13. Offshore PNW	0	41	-
TOTAL	4409	5074	-15%

RESULTS SCO₂T - NATCARB

SCO₂T approach

- **Database:** Improved geology data, removed many areas (marginal quality, depth, salinity, etc.).
- Tool: Dynamic injection.

Differences

- SCO₂T^{PRO} excluded marginal areas & added new areas leading to largest differences.
- Broad regional agreements.

RESULTS Screening

Complexity

 Capacity & injectivity are alone insufficient for identifying low-cost CO₂ storage.

Top charts

- High-capacity storage general means low cost.
- Low-capacity storage does not mean high cost.

Bottom charts

- Low injectivity means high cost.
- High injectivity does not mean low cost.

12/18/2023 | 10

RESULTS Screening

Results

- Even screening-level analysis is complicated.
- No single geologic variable can be used as a proxy for cost.

Take Home Message

Net Zero America

- 1,000s of CO₂ injection wells across the US.
- A first-step is nationwide site screening, but it is difficult.

SCO₂T^{PRO} enables nationwide site screening

- Coupled software + database.
- Rapid-running: entire country in seconds, uncertainty analysis.

Storage capacity

- Substantial... but not evenly geospatially distributed.
- Planning and coordination.

Storage costs

- Low-cost of onshore \sim \$7/tCO₂, offshore is \sim 4x higher.
- Financing assumptions do matter.

Complexity

- No simple proxy for good sequestration.
- Rapid screening for down-selection & modeling.

CARBON SOLUTIONS

richard.middleton@carbonsolutionsll.com